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The decoupling theorem of quantum field theory with massive particles is proved 
in Minkowski space when all the masses of the theory are led to go to infinity. 
The theorem establishes the vanishing property, in the distributional sense, of 
(absolutely convergent) Feynman amplitudes in a model independent way with 
subtractions performed at the origin. This extends previous efforts dealing with 
the proof of the theorem in the Euclidean region. 

1. INTRODUCTION 

Numerous applications of the decoupling theorem have been and are 
being carried out in the literature (Appelquist and Carazzonne, 1975; 
Poggio et al., 1977; Collins et al., 1978; Toussaint, 1978; Kazama and Yao, 
1980a, b; Hagiwara and Nakazawa, 1981; Ovrut and Schnitzer, 1981). This 
important theorem states that (renormalized) Feynman amplitudes involv- 
ing "heavy" masses may be neglected. This has interesting consequences on 
modern and future (Huff and Prewett, 1979) field theory models involving 
heavy masses much higher than available energies in experiments. Rigorous 
proofs of the decoupling theorem are available in the literature (Manoukian, 
1981; Ambjorn, 1979) which deals with the Euclidean region. We extend 
this theorem, for quantum field theory with massive particles, to Minkowski 
space for the cases where all the masses of the theory are led to go to 
infinity with subtractions of renormalization carried out at the origin. We 
establish the vanishing property of (absolutely convergent) Feynman ampli- 
tudes in the distributional sense in a model independent way. 
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2. PROOF OF THE THEOREM 

A Feynman amplitude, associated with some proper and connected 
graph G, in Minkowski space, may be written in the form 

L 
F~(P, Iz):fR,,dKA(P,K,I~,e) I'[ D;-', a>O (1) 

/=1 

Dt:[Q 2 + #~ -- ie(Q~ +#~)]  (2) 

0 3 K = (  k~ ..... k3), P=(P ,  ..... Pro) (3) 

/z = (/z t . . . . .  t ~ ) (4) 

where K is the set of the integration variables, P is the set of components of 
the independent external momenta, and/z is the set of masses in the theory. 
A is a polynomial in the elements in P, K ,g ,  in e and may be even a 
polynomial in the (gi)-J as well. The latter is well known to arise for 
theories with high spin fields. The QI are of the form Q / =  Y'jaljkj + YTbljPj, 
where the matrix [aq] is assumed to be of rank n. In (2) we have adopted 
the ie prescription first introduced in Zimmermann (1968). Each g / (  > 0) in 
(2) coincides with one of the elements in (4). In our metric Q2 = Q2 _ (Q0)2. 
For e>  0, the integral in (1) is assumed to be absolutely convergent (a.c.). 
We prove the following theorem. 

Theorem. For any f (P)~S(R4"),  with the latter denoting the 
Schwartz space (Schwartz, 1978), then with 

T~( f; ~1 ) = fR,,,,dP f( P )FE( P, ~1 �9 ) (5) 

we have as a tempered distribution 

lim ( lim T,(f; 71))=0 
~ c ~  ~ 0  

(6) 

We introduce Feynman parameters to write FE(P, ~) as 

L )- -L F~(P,~)=(L-1)!fR,~ 2atDt  (7) 
/=1 

where D = ( a = ( a  I . . . . .  at): at>~0, Y,f=lal= 1). For e > 0  it is easily estab- 
lished (Zimmermann, 1968) that (7) is a.c. and hence by the Fubini-Tonelli  
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theorem we may interchange the orders of integration over dK and da and 
obtain, up to an overall multiplicative constant dependent on e which has a 
well-defined limit for e ~ 0, 

F~(P, I t )=fDdaN(a,  P, It, e)G~(a, P ) - '  (8) 

where N(a, P, lt, e) is rational in a and is a polynomial in e and in the 
elements of P, It and may be even a polynomial in the (iti)-~. t is some 
positive integer and 

G~( a, P) = pUp + M 2 - ie(p" Up+ M 2 ) 

L 

M 2 =  E atit~ (9) 
/=1 

where U is rational in a (Zimmermann, 1968; Lowenstein and Speer, 1976). 
The following lemma is proved in the same manner as in Zimmermann 
(1968) and Lowenstein and Speer (1976) with some elementary modifica- 
tions. 

L e m m a .  (i) f D d a  N ( a ,  P,  It, ~), (ii) f n , . d P  f ( P )  
fodaN(a,  P, It, e)G~(a, P)- ' ,  e>0 ,  (iii) fodaNuhca(a), are all a.c., 
where in a compact and standard notation, 

N(a ,P , i t ,  e)= ~, It'~it-bp"edNobcd(a) (10) 
a ,h . c , d  

and, in particular, a = ( a  I . . . . .  ap), c = ( c  m . . . . .  c3.,), I t - h :  
(itl)-h, . . . . .  (ito)-b., with the a i, c~j, bj, d being finite nonnegative 
integers. Statement (iii) follows from (i) by the application of the 
so-called generalized Lagrange's interpolating (Zimmermann, 1968) 
formula. 

We rewrite F,(P, It) in (1) as 

L 

F (e.,Tit) = f .,aKa(e. K, nit. I-I K.  it, 
/=1 

= , d K A  ~ , k , i t ,  e D t -~ ,K,  it, e 
/ = l  
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where d o <~ d(G). The exponent d o in (11) may be, in general, reduced over 
d(G) if A is a polynomial in the ( # ) - ~  as well. Accordingly from (1 i) and 
(8), we may rewrite (5) as 

p __! 

Following Lowenstein and Speer (1976) (see also Hepp, 1966), but with 
some modifications, we introduce a C ~ function X(x): 0 ~ X(X) ~< 1 with 
X(x) = 1 for - 1/3 ~ x and X(x) = 0 for x < - 2/3,  with x = ( p Up/'~2~2 ), 
t~ = minj~;, and rewrite (12) as 

T ( f ;  v~) : T~'(f; r / )+  T~2(f; ~7) (13) 

( )  [ 
rvp." 

(14) 

x ~v(,~, p,~,, ~)o,(,,, P ) - '  (15) 

We note from (10) that (14) may be rewritten as 

a, b.  c, d \ "I~-~.L I 

x U,,,,,.,~(o4 [C,( ,~, -~ ) } -' (16) 

where [cl = [Col [ + . . .  [c3,,, [. For the integral (16) we have that [see defini- 
tion of X(x)]: 

_ _  2 2 ~ I -, pUP + M2>~ 5Ix +I~->~3W (17) ~2 

and 
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Therefore 

IT~'(f; n)l ~C E ]'~a--b~d~ IPV(P)I 
a,b,c,d 

X ~dotJN,,h~a(ot)l < ~  (19) 

where C > 0  and we have used part (iii) of the lemma, the fact that 
IX(X)[ ~<1 and the fact that pcf(P)~S(R4"'). We note that d~>0. Also if 
d(G) < 0, then I cl/> 0, on the other hand, if d(G) >i 0, then I c I >1 d(G) + 1, 
with subtractions carried out at the origin, i.e., d o -  Icl <0 .  Accordingly 
from the Lebesgue dominated convergence theorem [note also (18)] we have 

lim lim T~'(f; 71)=0 (20) 

(Actually the limits may be even reversed.) 
For the second integral T~2(f; ~) we use a variation of an identity in 

Lowenstein and Speer (1976): 

I ] j=lp ) ~ lnG~ (21) 

where ( pUp)~ = pUp - iep. Up. Substituting (21) in (15) using (10), integrat- 
ing by parts, and using the vanishing property of pCf, together with all its 
derivatives, at infinity we obtain for T~Z(f; 71) 

9 ( 1 / 2 ) t  (T~) d0+4m E I"La--bEdfR fD 
T - ( f ;  r/)-- ( t _  1 ) ~  4, dP daN,,bca(a ) 

�9 a,b,c,d 

] ()1} 0 py pT(nP) - x  pVp • ~ 3p2 (pUp), - ~  
lU=~ 

(22) 

The expression in ( .} may be explicitly (Lowenstein and Speer, 1976) 
written as a finite sum of the form 

[( pUp ) j - '• ~j" hi( TIP )xi( a, P) (23) 
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where the c i I> 0, hi~ S(R4"),  and the Xi are bounded and vanish for (a, P )  
outside the set ((u, P): pUp/I ~2 <~ - 1/3}. Accordingly for the integral (22) 
we have 

I(pUpL[ ~ l pUpl  ~ 1/3t~ 2 (24) 

and hence we may bound (22) as 

1T~2(f;~)[~<C ' ~ t~-%aEf dP'og'Ihi('qP)lfDdalN~,b,.d(a)f 
a ,  b ,  c ,  d i " lR  4'n 

• linG( ~, P)I (25) 

with C ' >  0 and finite gr Since h i e  S(IR 4.,), we may find positive integers NI 
and N 2 and a constant H > 0 such that 

( 2p,2) ) N2 
Ihi(vlP)l<~H ~ +1 7 + 1  

--  N 2 

<~Hao~2+l -N'[[P[2+I [ ] , 4 > I  (26) 

where i pl2 = ]~i.u[pi~{ 2 and where from (24) and the continuity condition of 
U on a (Lowenstein and Speer, 1976) we note that a 0 > 0. Accordingly by 
choosing N~ sufficiently large we can make ~g,~-~N, ~ 0 for ~ -~ oo. On the 
other hand, with the hi(~lp) replaced by (I Pl2/! ~2+ 1) -N-', with N 2 chosen 
sufficiently large, we may apply the so-called Hironaka-Atiyah-Bernstein-  
Gel'fand theorem (Hironaka, 1964; Atiyah, 1970; Bernstein and Gel'fand, 
1969) tailored to the problem at hand (Lowenstein and Speer, 1976) to 
establish that since the integral on the right-hand side of (25) without the 
lnG~ is a.c. then the integral with this factor is also a.c. for all e~>0, and 
hence by using in the process the Lebesgue dominated convergence theorem 
we obtain 

lim lim T2(f; -q)  = 0 (27) 
~ o o  ~ 0  

(again the limits may be even reversed); this completes the proof of the 
theorem. �9 
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